RENESAS HD74ALVC165245A

16-Bit Dual-supply Bus Transceiver with 3-state Outputs

REJ03D0157–0201 Rev.2.01 Apr. 11, 2005

Description

The HD74ALVC165245A has 16 bus transceivers with three state outputs in a 48-pin package. When (DIR) is high, data flows from the A inputs to the B outputs, and when (DIR) is low, data flows from the B inputs to the A outputs. A and B bus are separated by making enable input (\overline{OE}) high level. This 16-bit non-inverting bus transceiver uses two separate power-supply rails.

And this product has two terminals (V_{CCA} , V_{CCB}), V_{CCA} is connected with A bus side, V_{CCB} is connected with control input and B bus. V_{CCA} and V_{CCB} are isolated.

The A port is designed to track V_{CCA} , which accepts voltages from 1.4 V to 3.6 V, and the B port is designed to track V_{CCB} , which operates at 1.2 V to 2.7 V. Therefore, Bidirectional broad voltage conversion is possible.

Low voltage and high-speed operation is suitable at the battery drive product (note type personal computer) and low power consumption extends the life of a battery for long time operation.

Features

- This product function as level shift transceiver that change V_{CCA} input level to V_{CCB} output level, V_{CCB} Input level to V_{CCA} output level by providing different supply voltage to V_{CCA} and V_{CCB}.
- $V_{CCA} = 1.4 \text{ V}$ to 3.6 V, $V_{CCB} = 1.2 \text{ V}$ to 2.7 V ($V_{CCA} > V_{CCB}$)
- All control input V_I (max) = 3.6 V (@V_{CCB} = 0 V to 3.6 V)
- All A bus side input outputs V_{I/O} (max) = 3.6 V (@V_{CCA} = 0 V or output off state)
- All B bus side input outputs V_{I/O} (max) = 3.6 V (@V_{CCB} = 0 V or output off state)
- High output current A bus side: $\pm 4 \text{ mA} (@V_{CCA} = 1.5 \pm 0.1 \text{ V})$ $\pm 6 \text{ mA} (@V_{CCA} = 1.8 \pm 0.15 \text{ V})$
 - $\pm 18 \text{ mA} (@V_{CCA} = 2.5 \pm 0.2 \text{ V}) \\ \pm 24 \text{mA} (@V_{CCA} = 3.3 \pm 0.3 \text{ V})$

 $\begin{array}{l} \text{B bus side: } \pm 2 \text{ mA } (@V_{\text{CCB}} = 1.2 \text{ V}) \\ \pm 4 \text{ mA } (@V_{\text{CCB}} = 1.5 \pm 0.1 \text{ V}) \\ \pm 6 \text{ mA } (@V_{\text{CCB}} = 1.8 \pm 0.15 \text{ V}) \\ \pm 18 \text{ mA } (@V_{\text{CCB}} = 2.5 \pm 0.2 \text{ V}) \end{array}$

• Ordering Information

Part Name	Package Type	Package Code (Previous Code)	Package Abbreviation	Taping Abbreviation (Quantity)
HD74ALVC165245ATEL	TSSOP-48Pin	PTSP0048KA–A (TTP–48DBV)	т	EL (1,000pcs / Reel)

Function Table

Inp	uts	
1 0E	Operation	
L	L	1B1–1B8 data to 1A1–1A8 bus
L	Н	1A1–1A8 data to 1B1–1B8 bus
Н	X	Z

Inp	uts			
2 0E	2 0E 2DIR			
L	L	2B1–2B8 data to 2A1–2A8 bus		
L	Н	2A1–2A8 data to 2B1–2B8 bus		
Н	Х	Z		

H: High level

L: Low level

X: Immaterial

Z: High impedance

Pin Arrangement

1DIR 1		18 10E
1B1 2		17 1A1
1B2 3		16 1A2
GND 4		45 GND
1B3 5		14 1A3
1B4 6		13 1A4
VCCB 7		12 VCCA
1B5 8		 11 1A5
1B6 9		10 1A6
GND 10		39 GND
1B7 11		38 1A7
1B8 12		37 1A8
2B1 13		36 2A1
2B2 14		35 2A2
GND 15		34 GND
2B3 16		33 2A3
2B4 17		32 2A4
VCCB 18		31 VCCA
2B5 19		30 2A5
2B6 20	2	29 2A6
GND 21		28 GND
2B7 22		27 2A7
2B8 23		26 2A8
2DIR 24		25 2 0E
	(Top view)	

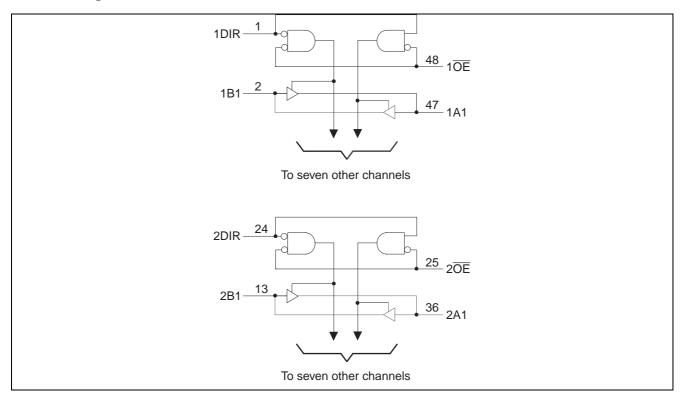
Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	V _{CCA} , V _{CCB}	-0.5 to 4.6	V	
Input voltage ^{*1}	VI	-0.5 to 4.6	V	DIR, OE
Input / output voltage	V _{I/O}	–0.5 to V_{CCA} +0.5	V	A port output "H" or "L"
		-0.5 to 4.6		A port output "Z" or V _{CCA} : OFF
		–0.5 to V _{CCB} +0.5		B port output "H" or "L"
		-0.5 to 4.6		B port output "Z" or V _{CCB} : OFF
Input diode current	I _{IK}	-50	mA	V ₁ < 0
Output diode current	Ι _{ΟΚ}	-50	mA	V ₀ < 0
		50		$V_{\rm O} > V_{\rm CC} + 0.5$
Output current	lo	±50	mA	
V _{CCA} , V _{CCB} , GND current	I _{CCA} , I _{CCB} , I _{GND}	100	mA	
Maximum power dissipation	P⊤	850	mW	TSSOP
at Ta = 55°C (in still air) ^{*2}				
Storage temperature	Tstg	–65 to 150	°C	

Notes: The absolute maximum ratings are values which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

1. The input and output voltage ratings may be exceeded even if the input and output clamp-current ratings are observed.

2. The maximum package power dissipation was calculated using a junction temperature of 150°C.


Recommended Operating Conditions

ltem	Symbol	Ratings	Unit	Conditions
Supply voltage	V _{CCB}	1.2 to 2.7	V	
	V _{CCA}	1.4 to 3.6		
Input / output voltage	VI	0 to 3.6	V	DIR, OE
	V _{I/O}	0 to V _{CCA}		A port output "H" or "L"
		0 to 3.6		A port output "Z" or V _{CCA} : OFF
		0 to V_{CCB}		B port output "H" or "L"
		0 to 3.6		B port output "Z" or V_{CCB} : OFF
Output current	I _{OHB}	-2	mA	V _{CCB} = 1.2 V
		-4		V _{CCB} = 1.5±0.1 V
		6		V _{CCB} = 1.8±0.15 V
		-18		V _{CCB} = 2.5±0.2 V
	I _{OHA}	-4		V _{CCA} = 1.5±0.1 V
		-6		V _{CCA} = 1.8±0.15 V
		-18		V _{CCA} = 2.5±0.2 V
		-24		V _{CCA} = 3.3±0.3 V
	I _{OLB}	2		V _{CCB} = 1.2 V
		4		V _{CCB} = 1.5±0.1 V
		6		V _{CCB} = 1.8±0.15 V
		18		V _{CCB} = 2.5±0.2 V
	I _{OLA}	4		V _{CCA} = 1.5±0.1 V
		6		V _{CCA} = 1.8±0.15 V
		18		V _{CCA} = 2.5±0.2 V
		24		V _{CCA} = 3.3±0.3 V
Input transition rise or fall time	Δt / Δν	10	ns / V	
Operating temperature	Та	-40 to 85	°C	

Note: Unused or floating inputs must be held high or low.

Block Diagram

Electrical Characteristics

ltem	Symbol	V _{CCB} (V)	V _{CCA} (V)	Min	Max	Unit	Test Conditions
nput voltage	VIHB	1.2	1.4 to 3.6	V _{CCB} ×0.75		V	B port
		1.5±0.1	1.65 to 3.6	V _{CCB} ×0.70	_		Control input
		1.8±0.15	2.3 to 3.6	V _{CCB} ×0.65	—		
		2.5±0.2	3.0 to 3.6	1.6	_		
	VIHA	1.2	1.5±0.1	V _{CCA} ×0.70	_		A port
		1.2 to 1.6	1.8±0.15	V _{CCA} ×0.65	—		
		1.2 to 1.95	2.5±0.2	1.6	—		
		1.2 to 2.7	3.3±0.3	2.0	_		
	VILB	1.2	1.4 to 3.6	_	V _{CCB} ×0.25		B port
		1.5±0.1	1.65 to 3.6	_	$V_{CCB} \times 0.30$		Control input
		1.8±0.15	2.3 to 3.6	_	$V_{CCB} \times 0.35$		
		2.5±0.2	3.0 to 3.6		0.7		
	V _{ILA}	1.2	1.5±0.1	_	$V_{CCA} \times 0.30$		A port
		1.2 to 1.6	1.8±0.15	_	V _{CCA} ×0.35		
		1.2 to 1.95	2.5±0.2		0.7		
		1.2 to 2.7	3.3±0.3	_	0.8		

C)

Electrical Characteristics (Cont.)

 $(Ta = -40 \text{ to } 85^{\circ}C)$

							$(Ta = -40 \text{ to } 85^{\circ}\text{C})$
Output voltage	V _{OHB}	1.2	1.4 to 3.6	V _{CCB} -0.2		V	I _{OH} = −100 μA
				0.9	—		I _{ОН} = -2 mA
		1.5±0.1	1.65 to 3.6	V _{CCB} -0.2	_		I _{OH} = −100 μA
				1.1	_		$I_{OH} = -4 \text{ mA}$
		1.8±0.15	2.3 to 3.6	V _{CCB} -0.2	_		I _{OH} = −100 μA
				1.25	_		$I_{OH} = -6 \text{ mA}$
		2.5±0.2	3.0 to 3.6	V _{CCB} -0.2	_		$I_{OH} = -100 \ \mu A$
				1.7	—		I _{OH} = -18 mA
	V _{OHA}	1.2	1.5±0.1	V _{CCA} -0.2	_		$I_{OH} = -100 \ \mu A$
				1.1	_		$I_{OH} = -4 \text{ mA}$
		1.2 to 1.6	1.8±0.15	V _{CCA} –0.2	—		I _{OH} = −100 μA
				1.25	_		$I_{OH} = -6 \text{ mA}$
		1.2 to 1.95	2.5±0.2	V _{CCA} -0.2	_		I _{OH} = -100 μA
				1.7	_		I _{OH} = -18 mA
		1.2 to 2.7	3.3±0.3	V _{CCA} -0.2	_		I _{OH} = -100 μA
				2.2	_		I _{OH} = -24 mA
Output voltage	V _{OLB}	1.2	1.4 to 3.6	—	0.2	V	I _{OL} = 100 μA
				—	0.3		I _{OL} = 2 mA
		1.5±0.1	1.65 to 3.6	—	0.2		I _{OL} = 100 μA
				—	0.3		$I_{OL} = 4 \text{ mA}$
		1.8±0.15	2.3 to 3.6	—	0.2		I _{OL} = 100 μA
				—	0.3		$I_{OL} = 6 \text{ mA}$
		2.5±0.2	3.0 to 3.6	_	0.2		I _{OL} = 100 μA
				_	0.6		I _{OL} = 18 mA
	V _{OLA}	1.2	1.5±0.1	—	0.2		I _{OL} = 100 μA
				_	0.3		$I_{OL} = 4 \text{ mA}$
		1.2 to 1.6	1.8±0.15	_	0.2		I _{OL} = 100 μA
				_	0.3		$I_{OL} = 6 \text{ mA}$
	-	1.2 to 1.95	2.5±0.2		0.2		I _{OL} = 100 μA
					0.6		I _{OL} = 18 mA
		1.2 to 2.7	3.3±0.3	_	0.2		I _{OL} = 100 μA
					0.55	-	I _{OL} = 24 mA
Input current	I _{IN}	2.7	3.6	—	±5.0	μA	V _I = GND or VCCB
							Control input
Off state output current	I _{OZ}	2.7	3.6		±10	μA	$V_{IN} = V_{IH} \text{ or } V_{IL}$
Output leak current	I _{OFF}	0	0	—	10	μΑ	V_{IN} , $V_{OUT} = 0$ to 3.6 V
Quiescent	I _{CCB}	2.7	3.6		20	μA	I_0 (B port) = 0,
supply current							$A_{IN} = V_{CCA}$ or GND
	I _{CCA}	2.7	3.6		20		I_O (A port) = 0, $B_{IN} = V_{CCB}$ or GND
	I _{CCB}	2.7	3.6		±20	1	$V_{CCB} \le (V_{IN}, V_{OUT}) \le 3.6 \text{ V}$
	I _{CCA}	2.7	3.6		±20	1	$V_{CCA} \le (V_{IN}, V_{OUT}) \le 3.6 \text{ V}$
Increase in I _{CC}	ΔI_{CCB}	2.7	3.6		750	μA	B port or control input
per Input ^{*1}	1.000					port	One input at V_{CCB} –0.6 V Other input at V_{CCB} or GND
	ΔI_{CCA}	2.7	3.6	—	750	μΑ	A port One input at V_{CCA} –0.6 V Other input at V_{CCA} or GND

Notes: For condition shown as Min or Max use the appropriate values under recommended operating conditions.

This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

Capacitance

 $(Ta = 25^{\circ}C)$

								(14 20 0)
Item	Symbol	V _{CCA} (V)	V _{CCB} (V)	Min	Тур	Max	Unit	Test Conditions
Control Input capacitance	C _{IN}	3.3	2.5		4		pF	$V_I = V_{CCB}$ or GND
Input / output capacitance	C _{I/O}	3.3	2.5		9	_	-	A port, $V_I = V_{CCA}$ or GND, B port, $V_I = V_{CCB}$ or GND

Switching Characteristics

 $(V_{\rm CCB}$ = 2.5±0.2 V, $V_{\rm CCA}$ = 3.3±0.3 V, Ta = –40 to 85°C)

Item	Symbol	Min	Тур	Max	Unit	Test conditions	From(Input)	To(Output)
Propagation delay time	t _{PLH}	0.6	_	4.0	ns	C _L = 30 pF	В	A
	t _{PHL}	0.6		4.0		$R_L = 500 \ \Omega$		
	t _{PLH}	0.8	_	4.4			A	В
	t _{PHL}	0.8	_	4.4				
Output enable time	t _{ZH}	0.6		4.0	ns	C _L = 30 pF	OE	А
	t _{ZL}	0.6	_	4.0		$R_L = 500 \ \Omega$		
	t _{ZH}	0.8	_	4.6			OE	В
	t _{ZL}	0.8		4.6				
Output disable time	t _{HZ}	0.6	_	4.8	ns	C _L = 30 pF	OE	А
	t _{LZ}	0.6		4.8		$R_L = 500 \ \Omega$		
	t _{HZ}	0.8		4.4			ŌĒ	В
	t _{LZ}	0.8		4.4				

 $(V_{CCB} = 1.8 \pm 0.15 \text{ V}, V_{CCA} = 3.3 \pm 0.3 \text{ V}, Ta = -40 \text{ to } 85^{\circ}\text{C})$

ltem	Symbol	Min	Тур	Max	Unit	Test conditions	From(Input)	To(Output)
Propagation delay time	t _{PLH}	0.6	_	5.1	ns	C _L = 30 pF	В	A
	t _{PHL}	0.6		5.1		$R_L = 500 \ \Omega$		
	t _{PLH}	1.5	_	6.2			A	В
	t _{PHL}	1.5		6.2				
Output enable time	t _{ZH}	0.6		5.1	ns	C _L = 30 pF	OE	A
	t _{ZL}	0.6	_	5.1		$R_L = 500 \ \Omega$		
	t _{ZH}	1.5		8.2			OE	В
	t _{ZL}	1.5		8.2				
Output disable time	t _{HZ}	0.6	_	5.6	ns	C _L = 30 pF	OE	А
	t _{LZ}	0.6		5.6		$R_L = 500 \ \Omega$		
	t _{HZ}	0.8	_	4.5			OE	В
	t _{LZ}	0.8	_	4.5				

Switching Characteristics (Cont.)

					$(V_{CCB} = $	$1.5\pm0.1 \text{ V}, \text{ V}_{\text{CCA}} =$	3.3±0.3 V, Ta	$= -40$ to 85° C)
Item	Symbol	Min	Тур	Max	Unit	Test conditions	From(Input)	To(Output)
Propagation delay time	t _{PLH}	0.6		5.5	ns	C _L = 30 pF	В	A
	t _{PHL}	0.6		5.5		$R_L = 500 \ \Omega$		
	t _{PLH}	1.5		5.5			A	В
	t _{PHL}	1.5		5.5				
Output enable time	t _{ZH}	0.6		6.0	ns	C _L = 30 pF	OE	A
	t _{ZL}	0.6		6.0		$R_L = 500 \ \Omega$		
	t _{ZH}	1.5		10.0			OE	В
	t _{ZL}	1.5		10.0				
Output disable time	t _{HZ}	0.6		6.0	ns	C _L = 30 pF	OE	A
	t _{LZ}	0.6	—	6.0		$R_L = 500 \ \Omega$		
	t _{HZ}	1.5	_	6.0]		ŌĒ	В
	t _{LZ}	1.5	—	6.0				

 $(V_{CCB} = 1.2 \text{ V}, V_{CCA} = 3.3 \pm 0.3 \text{ V}, \text{ Ta} = -40 \text{ to } 85^{\circ}\text{C})$

ltem	Symbol	Min	Тур	Max	Unit	Test conditions	From(Input)	To(Output)
Propagation delay time	t _{PLH}		3.5	_	ns	C _L = 30 pF	В	A
	t _{PHL}		3.5	_	·	$R_L = 500 \ \Omega$		
	t _{PLH}		4.5	_	·		A	В
	t _{PHL}		4.5	_	·			
Output enable time	t _{zH}		5.5	_	ns	C _L = 30 pF	OE	A
	t _{ZL}	_	5.5	_	·	$R_L = 500 \ \Omega$		
	t _{ZH}		9.0	_	·		OE	В
	t _{ZL}	_	9.0	_				
Output disable time	t _{HZ}		4.5	_	ns	C _L = 30 pF	OE	А
	t _{LZ}		4.5	_	·	$R_L = 500 \ \Omega$		
	t _{HZ}	_	5.5				ŌĒ	В
	t _{LZ}	_	5.5	_				

Item	Symbol	Min	Тур	Max	Unit	Test conditions	From(Input)	To(Output)
Propagation delay time	t _{PLH}	0.8		5.5	ns	C _L = 30 pF	В	A
	t _{PHL}	0.8		5.5		$R_L = 500 \ \Omega$		
	t _{PLH}	1.5		5.8			A	В
	t _{PHL}	1.5	_	5.8				
Output enable time	t _{ZH}	0.8	—	5.3	ns	C∟ = 30 pF	OE	А
	t _{ZL}	0.8	_	5.3		$R_L = 500 \ \Omega$		
	t _{ZH}	1.5	_	8.3			OE	В
	t _{ZL}	1.5	_	8.3				
Output disable time	t _{HZ}	0.8	—	5.2	ns	C _L = 30 pF	OE	A
	t _{LZ}	0.8	—	5.2		R _L = 500 Ω		
	t _{HZ}	0.8		4.6			ŌĒ	В
	t _{LZ}	0.8	_	4.6				

 $(V_{CCB} = 1.8 \pm 0.15 \text{ V}, V_{CCA} = 2.5 \pm 0.2 \text{ V}, \text{ Ta} = -40 \text{ to } 85^{\circ}\text{C})$

Switching Characteristics (Cont.)

lterre	0	Min	T			1.5 ± 0.1 V, V _{CCA} =	-	,
Item	Symbol	Min	Тур	Max	Unit	Test conditions	From(input)	To(Output)
Propagation delay time	t _{PLH}	1.5	_	6.0	ns	C _L = 30 pF	В	А
	t _{PHL}	1.5		6.0		R _L = 500 Ω		
	t _{PLH}	1.5		6.0			A	В
	t _{PHL}	1.5	_	6.0				
Output enable time	t _{ZH}	0.8	_	7.0	ns	C _L = 30 pF	OE	А
	t _{ZL}	0.8	_	7.0		$R_L = 500 \ \Omega$		
	t _{ZH}	1.5	_	10.0			OE	В
	t _{ZL}	1.5	_	10.0				
Output disable time	t _{HZ}	1.5		6.0	ns	C _L = 30 pF	OE	А
	t _{LZ}	1.5	_	6.0		$R_L = 500 \ \Omega$		
	t _{HZ}	1.5	_	6.0]		ŌĒ	В
	t _{LZ}	1.5		6.0]			

 $(V_{CCB} = 1.2 \text{ V}, V_{CCA} = 2.5 \pm 0.2 \text{ V}, \text{ Ta} = -40 \text{ to } 85^{\circ}\text{C})$

Item	Symbol	Min	Тур	Max	Unit	Test conditions	From(Input)	To(Output)
Propagation delay time	t _{PLH}	_	3.5	_	ns	C _L = 30 pF	В	А
	t _{PHL}	_	3.5	_		$R_L = 500 \ \Omega$		
	t _{PLH}	_	4.5	_			A	В
	t _{PHL}	_	4.5	_				
Output enable time	t _{ZH}	_	6.0		ns	C _L = 30 pF	OE	А
	t _{ZL}	_	6.0	_		$R_L = 500 \ \Omega$		
	t _{ZH}	_	9.0	_			OE	В
	t _{ZL}	_	9.0					
Output disable time	t _{HZ}	_	5.0		ns	C _L = 30 pF	ŌĒ	А
	t _{LZ}	_	5.0	_		$R_L = 500 \ \Omega$		
	t _{HZ}	_	5.5				ŌĒ	В
	t _{LZ}	_	5.5					

 $(V_{CCB} = 1.5 \pm 0.1 \text{ V}, V_{CCA} = 1.8 \pm 0.15 \text{ V}, \text{ Ta} = -40 \text{ to } 85^{\circ}\text{C})$

ltem	Symbol	Min	Тур	Max	Unit	Test conditions	From(Input)	To(Output)
Propagation delay time	t _{PLH}	1.5	—	7.0	ns	C _L = 30 pF	В	А
	t _{PHL}	1.5	—	7.0		$R_L = 500 \ \Omega$		
	t _{PLH}	1.5	—	7.0			A	В
	t _{PHL}	1.5	—	7.0				
Output enable time	t _{ZH}	1.5	—	8.0	ns	C _L = 30 pF	OE	А
	t _{ZL}	1.5	—	8.0		$R_L = 500 \ \Omega$		
	t _{ZH}	1.5	—	10.0			OE	В
	t _{ZL}	1.5	—	10.0				
Output disable time	t _{HZ}	1.5	—	7.0	ns	C _L = 30 pF	OE	А
	t _{LZ}	1.5	—	7.0		$R_L = 500 \ \Omega$		
	t _{HZ}	1.5		6.0]		ŌĒ	В
	t _{LZ}	1.5		6.0]			

$$(V_{CCB} = 1.5 \pm 0.1 \text{ V}, V_{CCA} = 2.5 \pm 0.2 \text{ V}, \text{ Ta} = -40 \text{ to } 85^{\circ}\text{C})$$

Switching Characteristics (cont.)

Item	Symbol	Min	Тур	Max	Unit	Test conditions	From(Input)	To(Output)
Propagation delay time	t _{PLH}	_	4.5	—	ns	C _L = 30 pF	В	A
	t _{PHL}	_	4.5	—		$R_L = 500 \ \Omega$		
	t _{PLH}	_	5.0	—			A	В
	t _{PHL}	_	5.0	—				
Output enable time	t _{ZH}	_	6.5	—	ns	C _L = 30 pF	OE	A
	t _{ZL}	_	6.5	—		$R_L = 500 \ \Omega$		
	t _{ZH}	_	9.0	—			OE	В
	t _{ZL}	—	9.0	—				
Output disable time	t _{HZ}	_	5.5	—	ns	C _L = 30 pF	OE	A
	t _{LZ}	—	5.5	—		$R_L = 500 \ \Omega$		
-	t _{HZ}	_	5.5	_]		OE	В
	t _{LZ}	_	5.5	_]			

$(V_{CCB} = 1.2 \text{ V}, V_{CCA} = 1.8 \pm 0.15 \text{ V}, \text{ Ta} = -40 \text{ to } 85^{\circ}\text{C})$

					(V_{CO})	$C_{\rm B} = 1.2 \text{ V}, \text{ V}_{\rm CCA} =$	1.5±0.1 V, Ta	$= -40$ to 85° C)
Item	Symbol	Min	Тур	Max	Unit	Test conditions	From(Input)	To(Output)
Propagation delay time	t _{PLH}		5.5		ns	C _L = 30 pF	В	A
	t _{PHL}	_	5.5			$R_L = 500 \ \Omega$		
	t _{PLH}	—	5.5				A	В
	t _{PHL}	_	5.5	_				
Output enable time	t _{ZH}	—	7.5		ns	C _L = 30 pF	OE	A
	t _{ZL}	—	7.5			$R_L = 500 \ \Omega$		
	t _{ZH}	_	9.0	_			OE	В
	t _{ZL}	_	9.0	_				
Output disable time	t _{HZ}	—	6.5		ns	C _L = 30 pF	OE	A
	t _{LZ}	_	6.5	_		$R_L = 500 \Omega$		
-	t _{HZ}	_	5.5				OE	В
	t _{i 7}		5.5		1			

Operating Characteristics

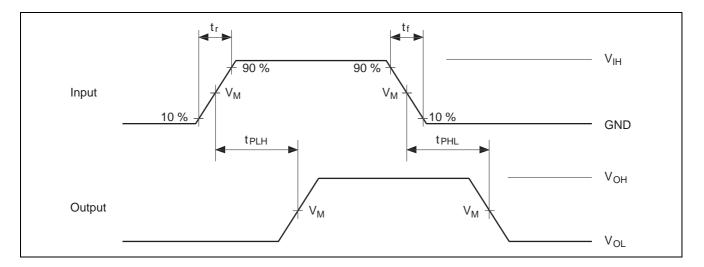
Item	Symbol	V _{CCA} (V)	V _{CCB} (V)	Min	Тур	Max	Unit	Test Conditions
Power dissipation	C _{PD}	3.3	2.5	_	40	_	pF	f = 10 MHz
capacitance								$C_L = 0$

Power-up considerations

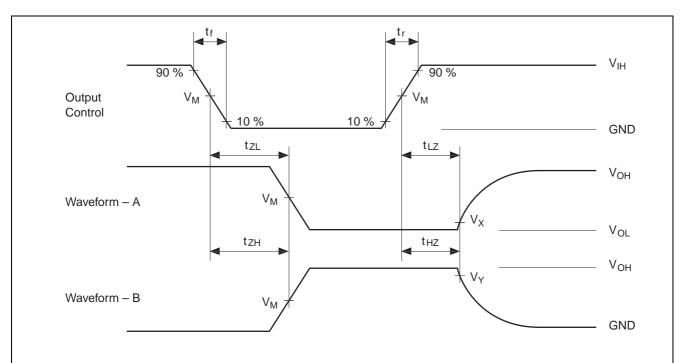
Level-translation devices offer an opportunity for successful mixed-voltage signal design.

A proper power-up sequence always should be followed to avoid excessive supply current, bus contention, oscillations, or other anomalies caused by improperly biased device pins.

Take these precautions to guard against such power-up problems.

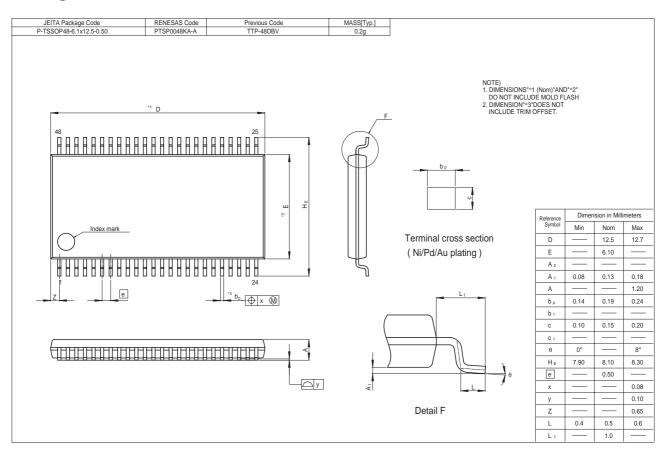

- 1. Connect ground before any supply voltage is applied.
- 2. Next, power up the control side of the device. (Power up of V_{CCB} is first. Next power up is V_{CCA} .)
- 3. Tie \overline{OE} to V_{CCB} with a pullup resistor so that it ramps with V_{CCB}.
- Depending on the direction of the data path, DIR can be high or low. If DIR high is needed (A data to B bus), ramp it with V_{CCB}. Otherwise, DIR low is needed (B data to A bus), ramp it with GND.

Test Circuit


				500 0	S1 🔎	See un	der table			
	•	•	•	500 Ω —////	_0					
$\begin{array}{c c} & & & & \\ \hline & & \\ \hline & & \\ &$										
			Load circ	uit for output	IS					
Symbol	= 1. = 1.	8±0.15 V 5±0.1 V 2 V	V _{CCB} = 1.3 = 1.3 = 1.3	5±0.1 V	V _{CCB} = 1.4 = 1.4	2 V	V _{CCB} = 1.			
Symbol	= 1. = 1. = 1. V _{CCA} = 3.	8±0.15 V 5±0.1 V 2 V 3±0.3 V	= 1.: = 1.: V _{CCA} = 2.:	5±0.1 V 2 V 5±0.2 V	= 1. V _{CCA} = 1.	2 V 8±0.15 V	$V_{CCA} = 1.$	5±0.1 V		
Symbol	= 1. = 1. = 1.	8±0.15 V 5±0.1 V 2 V	= 1. = 1.	5±0.1 V 2 V	= 1.	2 V		5±0.1 V		
Symbol	= 1. = 1. = 1. V _{CCA} = 3.	8±0.15 V 5±0.1 V 2 V 3±0.3 V	= 1.: = 1.: V _{CCA} = 2.:	5±0.1 V 2 V 5±0.2 V	= 1. V _{CCA} = 1.	2 V 8±0.15 V	$V_{CCA} = 1.$			
	$= 1.$ $= 1.$ $= 1.$ $= 1.$ $V_{CCA} = 3.$ B/OE to A	8±0.15 V 5±0.1 V 2 V 3±0.3 V A/OE to B	$= 1.3$ $= 1.3$ $V_{CCA} = 2.3$ $B/\overline{OE} \text{ to } A$	5±0.1 V 2 V 5±0.2 V	$= 1.3$ $V_{CCA} = 1.3$ $B/\overline{OE} \text{ to } A$	2 V 8±0.15 V A/OE to B	$V_{CCA} = 1.$ B/ \overline{OE} to A	5±0.1 V A/OE to B		

Waveforms – 1

Waveforms – 2



Sumbol	V _{cc}											
Symbol	3.3±0.3 V	2.5±0.2 V	1.8±0.15 V	1.5±0.1 V	1.2 V							
V _{IH}	2.7 V	V _{CC}	V _{CC}	V _{CC}	V _{CC}							
VM	1.5 V	1/2 V _{CC}	1/2 V _{CC}	1/2 V _{CC}	1/2 V _{CC}							
V _X	V _{OL} +0.3 V	V _{OL} +0.15 V	V _{OL} +0.15 V	V _{OL} +0.1 V	V _{OL} +0.1 V							
V _Y	V _{OH} 0.3 V	V _{OH} –0.15 V	V _{OH} -0.15 V	V _{OH} –0.1 V	V _{OH} –0.1 V							

Notes: 1. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz, Zo = 50 Ω , t_r \leq 2.0 ns, t_f \leq 2.0 ns.

- 2. Waveform–A is for an output with internal conditions such that the output is low except when disabled by the output control.
- 3. Waveform–B is for an output with internal conditions such that the output is high except when disabled by the output control.
- 4. The output are measured one at a time with one transition per measurement.

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- Notes regarding these materials
 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. ar a third party.
 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information before making a final decision on the applicability of the information and products. Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information actual system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage or manufactured for use in a device or system that is used under circumstanc

- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

http://www.renesas.com